• Die Zukunft mitgestalten

    Die Hector Fellow Academy stößt innovative Forschungsprojekte in neuen wissenschaftlichen Fragestellungen an.

Towards Topological Many-Body Physics Using State-Dependent Optical Lattices

Hendrik von Raven – Hector Fellow Immanuel Bloch

Viele fundamentale Phänomene in Festkörpern werden durch die topologischen Eigenschaften des Systems hervorgerufen. Im Rahmen des Projektes wurde ein neues Quantengasexperimentes entworfen und entwickelt, welches für das Studium topologischer Systeme optimiert ist.

Dieses auf Caesium basierende Experiment kombiniert zustandsabhängige Gitter als neuartige Methode zur Erzeugung komplexer Topologien mit modernen Werkzeugen wie hochauflösenden Mikroskopen.

In modern condensed matter physics topology plays a fundamental role in the classification of phases of matter. A prominent example is the quantum Hall effect discovered in two-dimensional electron gases under extreme conditions. Quantum Hall insulators are isolating in the bulk, but exhibit conducting edge states, which results in a quantised Hall conductance. The interplay between topology and interactions between particles gives rise to even more exotic phenomena. One example is the fractional quantum Hall effect where excitations with fractional charges and statistics can occur. These topological systems still pose many open questions and their theoretical understanding and possible realisations in physical systems is at the current frontier of research.

This project is part of the new Caesium laboratory of the Hector Fellow Immanuel Bloch. The goal of this project is the design and construction of a new experimental quantum gas experiment, optimised for the study of topological systems. A central feature of this setup will be a novel technique for the creation of complex topological quantum states using state-dependent optical lattices. This will eliminate many limitations present in current experimental techniques. Additionally, the setup will incorporate novel techniques such as the usage of high resolution microscopes, allowing for the observation of single atoms. This setup will open the path for new studies of topological strongly-interacting phases of matter.